دوره 13، شماره 3 - ( مرداد و شهریور 1398 )                   جلد 13 شماره 3 صفحات 241-250 | برگشت به فهرست نسخه ها

XML English Abstract Print


1- استادیار گروه فناوری اطلاعات سلامت، دانشکده مدیریت و اطلاع رسانی پزشکی، دانشگاه علوم پزشکی شیراز، شیراز، ایران
2- استادیار گروه انفورماتیک پزشکی، دانشکده علوم پزشکی، دانشگاه تربیت مدرس، تهران، ایران ، aa.safaei@modares.ac.ir
3- استاد گروه مدیریت اطلاعات سلامت، دانشکده پیراپزشکی، دانشگاه علوم پزشکی تهران، تهران، ایران
4- دکتری تخصصی مدیریت اطلاعات سلامت، مرکز تحقیقات بیماری های غیر واگیر، دانشگاه علوم پزشکی فسا، فسا، ایران
چکیده:   (1402 مشاهده)
زمینه و هدف: سرطان پستان شایع‌‌ترین سرطان و اصلی‌ترین علت مرگ ناشی از سرطان در زنان سراسر جهان به­‌شمار می‌رود. تکنولوژی‌هایی مثل داده کاوی، به متخصصان این حوزه، امکان بهبود تصمیم‌گیری را در زمینه­ی تشخیص زودهنگام فراهم آورده‌اند. هدف از این پژوهش توسعه­‌ی مدل تشخیص‌ خودکار سرطان پستان با به­‌کارگیری روش‌های داده کاوی و انتخاب مدل بومی ویژه بیماران استان فارس با بالا‌ترین دقت تشخیص می‌باشد.
روش بررسی: در این مطالعه، تعداد 654 پرونده در دسترس از بیماران کلینیک تخصصی سرطان پستان مطهری شیراز به­‌عنوان نمونه مورد استفاده قرار گرفت که بعد از عملیات پیش پردازش این تعداد به 621 پرونده کاهش یافت. برای هر کدام از نمونه­‌ها دارای 22 ویژگی در پرونده پزشکی ثبت شده بود که در نهایت 10 ویژگی تاثیر‌گذار در ساخت مدل استفاده شد. از سه روش درخت تصمیم، بیز ساده و شبکه عصبی مصنوعی به­‌منظور تشخیص ابتلا به سرطان پستان و روش 10-fold cross-validation برای ساخت و ارزیابی مدل بر روی مجموعه داده­‌ی جمع‌­آوری شده بهره گرفته شد.
 یافته‌ها: نتایج به­‌دست آمده از سه تکنیک ذکر شده نشان داد که هر سه مدل، نتایج امیدبخشی در تشخیص این سرطان دارند. در نهایت، شبکه عصبی مصنوعی، بالا‌ترین دقت 94/49%(حساسیت 96/19%، ویژگی 86/36%)، در تشخیص ابتلا به سرطان پستان به خود اختصاص داد.
نتیجه گیری: بر طبق نتایج حاصل از درخت تصمیم ایجاد شده، ریسک فاکتورهایی چون سن، وزن، سن شروع قاعدگی، یائسگی، مدت زمان مصرف OCP و سن اولین بارداری از جمله عوامل موثر در ابتلای زنان به سرطان پستان در استان فارس شناخته شدند.
متن کامل [PDF 648 kb]   (524 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مدیریت خدمات بهداشتی درمانی
انتشار الکترونیک: 1398/8/13