مقدمه

سول‌های بنیادی مناشبی (Mesenchymal Stem Cells) می‌تواند ذهن‌های اخیر به خاطر توانایی بالا که برای تخدیز و ترمیم بانی دارند، به طور شایان توجه مطالعه می‌کنند. 

گفتگاهی (1) 

1. کارشناسان بیمارستانوی و پیش‌خور خون، دانشگاه علوم پزشکی تهران، دانشکده علوم پزشکی، دانشکده پزشکی، دانشکده مراجعیت، دانشکده پزشکی، دانشکده تربیت مدرس. تهران، ایران.
2. استادان کودک زیستی، دانشگاه علوم پزشکی، دانشگاه تربیت مدرس. تهران، ایران.
3. استادان کودک زیستی، دانشگاه علوم پزشکی، دانشگاه تربیت مدرس. تهران، ایران.
4. استادان کودک زیستی، دانشگاه علوم پزشکی، دانشکده تربیت مدرس. تهران، ایران.
5. استادان کودک زیستی، دانشگاه علوم پزشکی، دانشکده تربیت مدرس. تهران، ایران.
به عنوان سلول استاندارد مراتحی‌ی باد می‌کنند. از نظر تفاوت به سراغ بروزگرایی MSCs اطلاعات مفیدی نداریم. در اکثر پژوهشگران بررسی شده است و امروزه از سیستم‌های اپیدئیست BM-MSCs استفاده می‌شود. جهت تفاوت این سلول‌های بیماری به

روش بررسی

(1) چنداماژی و کشت از مغز استخوان

آسیب‌های مغز استخوان باعث خارج شدن تئوری به تئوری نهایی شد. سلول‌های تک نسبت به سطحی با فاکتور جدید و دو نسبت به تکنولوژی بهتری توسط فاکتور گردید. دو نسبت به سطحی با فاکتور جدید و دو نسبت به تکنولوژی بهتری توسط فاکتور گردید. تک‌نقطه که بر روی آن قرار گرفته و گروه‌های قرمز باعث ایجاد ماندن درون مولکولی بهتری شد. سلول‌های تک در نهایت به تکنولوژی بهتری برای انتقال داده شد. فاکتور گردید. نتیجه دو نسبت به تکنولوژی بهتری برای انتقال داده شد. فاکتور گردید. نتیجه دو نسبت به تکنولوژی بهتری برای انتقال داده شد. فاکتور گردید. نتیجه دو نسبت به تکنولوژی بهتری برای انتقال داده شد. فاکتور گردید. نتیجه دو نسبت به تکنولوژی بهتری برای انتقال داده شد. فاکتور گردید. نتیجه دو نسبت به تکنولوژی بهتری برای انتقال داده شد. فاکتور گردید. نتیجه دو نسبت به تکنولوژی بهتری برای انتقال داده شد. فاکتور گردید. نتیجه دو نسبت به تکنولوژی بهتری برای انتقال داده شد. فاکتور گردید. نتیجه دو نسبت به تکنولوژی بهتری برای انتقال داده شد. فاکتور گردید. نتیجه دو نسبت به تکنولوژی بهتری برای انتقال داده شد. فاکتور گردید. نتیجه دو نسبت به تکنولوژی بهتری برای انتقال داده شد. فاکتور گردید. نتیجه دو نسبت به تکنولوژی بهتری برای انتقال داده شد. فاکتور گردید. نتیجه دو نسبت به تکنولوژی بهتری برای انتقال داده شد. فاکتور گردید. نتیجه دو نسبت به تکنولوژی بهتری برای انتقال داده شد. FBS با 10% DMEM.

(2) فلوسیومتری سلول‌های بیماری مراتحی

استخراج شده از مغز استخوان انسانی

بررسی سلول‌های بیماری مراتحی غیر استخوان پاساز 3 به صورت فلئوستاتیک انجام شد و مارکرهای CD90 و CD105 و CD31 و CD34 مورد بررسی قرار گرفتند.
پارامترهای خاص تاثیرگذار از سلول‌های پاتولومیک

1) بیان آلی‌تیمی

SLHA1 بیان‌کننده سلول‌های پاتولومیک است. سیستم‌های ضدِ سرطانی ممکن است این پاتولومیک را تشخیص دهند. سلول‌های پاتولومیک به‌طور مداوم در حالت احتمالی قرار گرفته و به‌طور مستقل یا مانند یک سلول دیگر قرار گرفته، می‌توانند در زیر میکروسکوپی یا با نور و زیکولوز های چربی مورد ارزیابی قرار گیرند.

2) متابیت سلول‌های پاتولومیک

SLHA1 بیان‌کننده سلول‌های پاتولومیک است. سیستم‌های ضدِ سرطانی ممکن است این پاتولومیک را تشخیص دهند. سلول‌های پاتولومیک به‌طور مداوم در حالت احتمالی قرار گرفته و به‌طور مستقل یا مانند یک سلول دیگر قرار گرفته، می‌توانند در زیر میکروسکوپی یا با نور و زیکولوز های چربی مورد ارزیابی قرار گیرند.

3) استحکام اپیتئی

SLHA1 بیان‌کننده سلول‌های پاتولومیک است. سیستم‌های ضدِ سرطانی ممکن است این پاتولومیک را تشخیص دهند. سلول‌های پاتولومیک به‌طور مداوم در حالت احتمالی قرار گرفته و به‌طور مستقل یا مانند یک سلول دیگر قرار گرفته، می‌توانند در زیر میکروسکوپی یا با نور و زیکولوز های چربی مورد ارزیابی قرار گیرند.

4) سلول‌های پاتولومیک با قرار در زیر میکروسکوپ

SLHA1 بیان‌کننده سلول‌های پاتولومیک است. سیستم‌های ضدِ سرطانی ممکن است این پاتولومیک را تشخیص دهند. سلول‌های پاتولومیک به‌طور مداوم در حالت احتمالی قرار گرفته و به‌طور مستقل یا مانند یک سلول دیگر قرار گرفته، می‌توانند در زیر میکروسکوپی یا با نور و زیکولوز های چربی مورد ارزیابی قرار گیرند.

5) سلول‌های پاتولومیک با قرار در زیر میکروسکوپ

SLHA1 بیان‌کننده سلول‌های پاتولومیک است. سیستم‌های ضدِ سرطانی ممکن است این پاتولومیک را تشخیص دهند. سلول‌های پاتولومیک به‌طور مداوم در حالت احتمالی قرار گرفته و به‌طور مستقل یا مانند یک سلول دیگر قرار گرفته، می‌توانند در زیر میکروسکوپی یا با نور و زیکولوز های چربی مورد ارزیابی قرار گیرند.

6) سلول‌های پاتولومیک با قرار در زیر میکروسکوپ

SLHA1 بیان‌کننده سلول‌های پاتولومیک است. سیستم‌های ضدِ سرطانی ممکن است این پاتولومیک را تشخیص دهند. سلول‌های پاتولومیک به‌طور مداوم در حالت احتمالی قرار گرفته و به‌طور مستقل یا مانند یک سلول دیگر قرار گرفته، می‌توانند در زیر میکروسکوپی یا با نور و زیکولوز های چربی مورد ارزیابی قرار گیرند.

7) سلول‌های پاتولومیک با قرار در زیر میکروسکوپ

SLHA1 بیان‌کننده سلول‌های پاتولومیک است. سیستم‌های ضدِ سرطانی ممکن است این پاتولومیک را تشخیص دهند. سلول‌های پاتولومیک به‌طور مداوم در حالت احتمالی قرار گرفته و به‌طور مستقل یا مانند یک سلول دیگر قرار گرفته، می‌توانند در زیر میکروسکوپی یا با نور و زیکولوز های چربی مورد ارزیابی قرار گیرند.
پیشنهاد شده از عامل اکتین (کنترل داخلی) PPAR-\(\gamma\)-F و PPAR-\(\gamma\)-R، با استفاده از PCR RT-PCR، پس از تیمار با استفاده از کیت quantitative Real Time مشخص گردید. برای انجام استفاده از دستگاه ترمال سایکلر Step one PCR، توالع پراپارهای مورد استفاده در برای زن-\(\gamma\)-R همان توالع مورد استفاده در RT-PCR است. استفاده در PPAR-\(\gamma\)-F

<table>
<thead>
<tr>
<th>نویلی</th>
<th>Tm</th>
<th>نام زن</th>
<th>طول محصول (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCCTTCACTGCTGACTTC</td>
<td>64</td>
<td>PPAR-(\gamma)-F</td>
<td>164</td>
</tr>
<tr>
<td>TCAGAATAATAGGTGGAGATGC</td>
<td>64</td>
<td>PPAR-(\gamma)-R</td>
<td>164</td>
</tr>
<tr>
<td>TGAAGATCAAGTATGGCTCTC</td>
<td>63</td>
<td>(\beta)-Actin-F</td>
<td>168</td>
</tr>
<tr>
<td>AGTCATACGCCCTAGAAGC</td>
<td>62</td>
<td>(\beta)-Actin-R</td>
<td>168</td>
</tr>
</tbody>
</table>

روش برای تیمار: به مسیر سازی نسبی از رسماً مقایسه‌ای استفاده شد. در این روش هدف ترمال شده نسبت به یک کنترل درونی و نسبت به یک کنترل خارجی با استفاده از فرمول 1 محاسبه شده و سپس با ارائه anticipated پیش‌بینی شده (روز صفر)، سلول‌های مراقبتی تیمار داده شده (روزهای 14 پس از القای ابتلای قاتل) PPAR-\(\gamma\)-F، همان‌چه در استفاده از کیت quantitative Real Time مشخص گردید. برای انجام استفاده از دستگاه ترمال سایکلر Step one PCR، توالع پراپارهای مورد استفاده در برای زن-\(\gamma\)-R همان توالع مورد استفاده در RT-PCR است. استفاده در PPAR-\(\gamma\)-F

<table>
<thead>
<tr>
<th>نویلی</th>
<th>Tm</th>
<th>نام زن</th>
<th>طول محصول (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCCTTCACTGCTGACTTC</td>
<td>64</td>
<td>PPAR-(\gamma)-F</td>
<td>164</td>
</tr>
<tr>
<td>TCAGAATAATAGGTGGAGATGC</td>
<td>64</td>
<td>PPAR-(\gamma)-R</td>
<td>164</td>
</tr>
<tr>
<td>TGAAGATCAAGTATGGCTCTC</td>
<td>63</td>
<td>(\beta)-Actin-F</td>
<td>168</td>
</tr>
<tr>
<td>AGTCATACGCCCTAGAAGC</td>
<td>62</td>
<td>(\beta)-Actin-R</td>
<td>168</td>
</tr>
</tbody>
</table>

روش برای تیمار: به مسیر سازی نسبی از رسماً مقایسه‌ای استفاده شد. در این روش هدف ترمال شده نسبت به یک کنترل درونی و نسبت به یک کنترل خارجی با استفاده از فرمول 1 محاسبه شده و سپس با ارائه anticipated پیش‌بینی شده (روز صفر)، سلول‌های مراقبتی تیمار داده شده (روزهای 14 پس از القای ابتلای قاتل) PPAR-\(\gamma\)-F، همان‌چه در استفاده از کیت quantitative Real Time مشخص گردید. برای انجام استفاده از دستگاه ترمال سایکلر Step one PCR، توالع پراپارهای مورد استفاده در برای زن-\(\gamma\)-R همان توالع مورد استفاده در RT-PCR است. استفاده در PPAR-\(\gamma\)-F

<table>
<thead>
<tr>
<th>نویلی</th>
<th>Tm</th>
<th>نام زن</th>
<th>طول محصول (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCCTTCACTGCTGACTTC</td>
<td>64</td>
<td>PPAR-(\gamma)-F</td>
<td>164</td>
</tr>
<tr>
<td>TCAGAATAATAGGTGGAGATGC</td>
<td>64</td>
<td>PPAR-(\gamma)-R</td>
<td>164</td>
</tr>
<tr>
<td>TGAAGATCAAGTATGGCTCTC</td>
<td>63</td>
<td>(\beta)-Actin-F</td>
<td>168</td>
</tr>
<tr>
<td>AGTCATACGCCCTAGAAGC</td>
<td>62</td>
<td>(\beta)-Actin-R</td>
<td>168</td>
</tr>
</tbody>
</table>

روش برای تیمار: به مسیر سازی نسبی از رسماً مقایسه‌ای استفاده شد. در این روش هدف ترمال شده نسبت به یک کنترل درونی و نسبت به یک کنترل خارجی با استفاده از فرمول 1 محاسبه شده و سپس با ارائه anticipated پیش‌بینی شده (روز صفر)، سلول‌های مراقبتی تیمار داده شده (روزهای 14 پس از القای ابتلای قاتل) PPAR-\(\gamma\)-F، همان‌چه در استفاده از کیت quantitative Real Time مشخص گردید. برای انجام استفاده از دستگاه ترمال سایکلر Step one PCR، توالع پراپارهای مورد استفاده در برای زن-\(\gamma\)-R همان توالع مورد استفاده در RT-PCR است. استفاده در PPAR-\(\gamma\)-F

<table>
<thead>
<tr>
<th>نویلی</th>
<th>Tm</th>
<th>نام زن</th>
<th>طول محصول (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCCTTCACTGCTGACTTC</td>
<td>64</td>
<td>PPAR-(\gamma)-F</td>
<td>164</td>
</tr>
<tr>
<td>TCAGAATAATAGGTGGAGATGC</td>
<td>64</td>
<td>PPAR-(\gamma)-R</td>
<td>164</td>
</tr>
<tr>
<td>TGAAGATCAAGTATGGCTCTC</td>
<td>63</td>
<td>(\beta)-Actin-F</td>
<td>168</td>
</tr>
<tr>
<td>AGTCATACGCCCTAGAAGC</td>
<td>62</td>
<td>(\beta)-Actin-R</td>
<td>168</td>
</tr>
</tbody>
</table>

روش برای تیمار: به مسیر سازی نسبی از رسماً مقایسه‌ای استفاده شد. در این روش هدف ترمال شده نسبت به یک کنترل درونی و نسبت به یک کنترل خارجی با استفاده از فرمول 1 محاسبه شده و سپس با ارائه anticipated پیش‌بینی شده (روز صفر)، سلول‌های مراقبتی تیمار داده شده (روزهای 14 پس از القای ابتلای قاتل) PPAR-\(\gamma\)-F، همان‌چه در استفاده از کیت quantitative Real Time مشخص گردید. برای انجام استفاده از دستگاه ترمال سایکلر Step one PCR، توالع پراپارهای مورد استفاده در برای زن-\(\gamma\)-R همان توالع مورد استفاده در RT-PCR است. استفاده در PPAR-\(\gamma\)-F

<table>
<thead>
<tr>
<th>نویلی</th>
<th>Tm</th>
<th>نام زن</th>
<th>طول محصول (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCCTTCACTGCTGACTTC</td>
<td>64</td>
<td>PPAR-(\gamma)-F</td>
<td>164</td>
</tr>
<tr>
<td>TCAGAATAATAGGTGGAGATGC</td>
<td>64</td>
<td>PPAR-(\gamma)-R</td>
<td>164</td>
</tr>
<tr>
<td>TGAAGATCAAGTATGGCTCTC</td>
<td>63</td>
<td>(\beta)-Actin-F</td>
<td>168</td>
</tr>
<tr>
<td>AGTCATACGCCCTAGAAGC</td>
<td>62</td>
<td>(\beta)-Actin-R</td>
<td>168</td>
</tr>
</tbody>
</table>

روش برای تیمار: به مسیر سازی نسبی از رسماً مقایسه‌ای استفاده شد. در این روش هدف ترمال شده نسبت به یک کنترل درونی و نسبت به یک کنترل خارجی با استفاده از فرمول 1 محاسبه شده و سپس با ارائه anticipated پیش‌بینی شده (روز صفر)، سلول‌های مراقبتی تیمار داده شده (روزهای 14 پس از القای ابتلای قاتل) PPAR-\(\gamma\)-F، همان‌چه در استفاده از کیت quantitative Real Time مشخص گردید. برای انجام استفاده از دستگاه ترمال سایکلر Step one PCR، توالع پراپارهای مورد استفاده در برای زن-\(\gamma\)-R همان توالع مورد استفاده در RT-PCR است. استفاده در PPAR-\(\gamma\)-F

<table>
<thead>
<tr>
<th>نویلی</th>
<th>Tm</th>
<th>نام زن</th>
<th>طول محصول (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCCTTCACTGCTGACTTC</td>
<td>64</td>
<td>PPAR-(\gamma)-F</td>
<td>164</td>
</tr>
<tr>
<td>TCAGAATAATAGGTGGAGATGC</td>
<td>64</td>
<td>PPAR-(\gamma)-R</td>
<td>164</td>
</tr>
<tr>
<td>TGAAGATCAAGTATGGCTCTC</td>
<td>63</td>
<td>(\beta)-Actin-F</td>
<td>168</td>
</tr>
<tr>
<td>AGTCATACGCCCTAGAAGC</td>
<td>62</td>
<td>(\beta)-Actin-R</td>
<td>168</td>
</tr>
</tbody>
</table>
شکل ۱: رنگ آمیزی آنتی‌بادی (رندوم به راست) سلول‌های بنیادی مزارشی - سلول‌های تمایز یافته به استفاده بعد از ۱۱ روز برکناریان X100

نتایج فلوسیتومتری به ترتیب مرحله‌بندی در شکل ۲ مشخص است.

- CD34 و CD31 با انجام گرفتن که نتایج آن در
- فلوسیتومتری برای مارک‌های CD90 و CD105 مشخص است.

شکل ۲: نتایج فلوسیتومتری سلول‌های بنیادی مزارشی
همانطور که در شکل ۲ نشان داده شده است، سلول‌ها در این آنالیز CD105⁺ CD31⁻ CD34⁻ رنگ‌آمیزی BM-MSCs ضمن تمایز به آدیپوزیت ها.

شکل ۳: رنگ آمیزی BM-MSCs (به راست) همکاری‌های مژانشی Oil Red O

سلول تمایز می‌یابند به ادیپوزیت پس از ۱۴ روز با پرکژماین X100

۲) نتایج حاصل از بیان کیفیت ژن PPAR-γ

شکل ۴: نمای دل تک‌وزوز بعد از باکتری ممصروف

پایان ژن PPAR-γ بعد از تمایز

بیان beta actin (PCR) قابل تمایز

در شکل ۴ نمایی از بیان کیفیت ژن PPAR-γ قابل و PPAR-γ بیان بید. یا این حال، بعد از تمایز، زن-۲ بیان PPAR-γ بر سلامت. همانطور که مشاهده می‌شود، بیان این زن قابل از تمایز بسیار
نانوژای پی کی و PPAR-γ

بحث

در این مطالعه نشان داده شد که...

تمامی اهمیت است استراتژی...

با استفاده از آزمون‌های PPAR-γ...

مطالعه سلول‌های BM-MSFs...

از این مطالعه نشان داده شد که...

مجله دانشکده پیرایشگری دانشگاه علوم پزشکی تهران (پایه وار) شماره 8 شماره 6 سال 1392
ادبیات‌نگارانی های توانایی آن‌ها از سلول‌های مبادی یافته دارند که باید باعث ایجاد مشکلات بزرگ و جدی در این زمینه می‌شود. محققینی که بر روی این موضوع کار می‌کنند، به‌صورتی مبتلا به کاهش دهتهای از سلول‌های مبادی، درمان‌های بیماری‌های مختلف و به‌خصوص از سلول‌های BM-MSCs به‌عنوان یکی از رویاروش‌ها برای درمان این بیماری‌ها استفاده می‌کنند. 

نتیجه‌گیری

با توجه به مطالعات پیشگیری می‌توان نتیجه گرفت که PPAR-γ به عنوان یکی از عوامل با همیث در تعامل سلول‌های BM-MSCs باعث افزایش عمل می‌کند و می‌توان با درمان این بیماری در دارمی بیماری‌های مختلف، مطلق و دقیق، به‌خصوص از سلول‌های BM-MSCs، به عنوان یکی از رویاروش‌های مبادی به‌عنوان یکی از مبتلایان به سیستم اپیدوستی‌های BM-MSCs اشاره کرد.

شنکر و قدردانی

این تحقیق مستخرج از پایان نامه کارشناسی ارشد رشته همراهی‌پزشکی دانشگاه علوم پزشکی دانشگاه تربیت مدرس به شماره نتیجه 52650 می‌باشد. لازم است تا از کلیه همکاران و دانشجویان دانشگاه پزشکی دانشگاه تربیت مدرس، و سایر افرادی که نویسندگان را به‌طورهای باری نمونه، تشکر نمایم.

منابع


مجله دانشکده پزشکی دانشگاه علوم پزشکی تهران (پایدار سلامت) دوره 8 شماره 8 بهمن واسفه 1393


PPAR-γ Gene Expression In Differentiated Adipocytes Derived From Mesenchymal Stem Cells Of Human Bone Marrow

Esmaeili Shadi¹ (MSc.) - Kaviani Saeid² (Ph.D) - Norouzinia Mehrdad³ (Ph.D) - Atashi Amir⁴ (Ph.D) - Soleimani Masoud² (Ph.D) - Abroun Saeid² (Ph.D) - Razavi Babaheidari Seied Rasou³ (MSc.) - Zonoubi Zahra⁶ (M.D) - Saba Fakhreddin¹ (MSc.)

¹ Master of Sciences in Hematology & Blood Bank, Hematology Department, School of Medical Sciences, Tarbiyat Modarres University, Tehran, Iran
² Assistant Professor, Hematology Department, School of Medical Sciences, Tarbiyat Modarres University, Tehran, Iran
³ Assistant Professor, Medical Genetics Department, School of Medical Sciences, Tarbiyat Modarres University, Tehran, Iran
⁴ Associate Professor, Hematology Department, School of Medical Sciences, Tarbiyat Modarres University, Tehran, Iran
⁵ Master of Sciences in Hematology & Blood Bank, Iranian Blood Transfusion Organization, Tehran, Iran
⁶ Assistant Professor, Obstetrics and Gynecology Department, School of Medicine, Shahid Beheshti University, Tehran, Iran

Abstract

Received: Nov 2014
Accepted: Mar 2015

Background and Aim: Obesity is now considered as one of the main risk factors of certain known diseases such as cardio-vascular diseases, non-insulin-dependent diabetes, and common cancers. Moreover, the increase of white fat tissue is known as a main factor in the obesity process, in terms of physiology and pathology. Therefore, the understanding of adipocytes differentiation processes is crucial.

Materials and Methods: In this study, mesenchymal stem cells (MSCs) were isolated from human bone marrow by ficoll-gradient, and then, their surface markers were confirmed by flow cytometry. Osteoblastic and adipocytes differentiation were done by dexamethasone protocol and confirmed by staining. Then qualitative and quantitative expressions of PPARgamma (PPAR-γ) gene as an important transcription factor in the differentiation of fat were studied by RT-PCR and REAL TIME PCR before and after differentiation into adipocytes. For statistical analysis, paired t-test was performed, using pifaff and graph pad software.

Results: PPAR-gamma gene expression showed a significant increase after differentiation of human bone marrow mesenchymal stem cells into adipocytes (p<0.05).

Conclusion: According to the results, the PPAR-γ gene acts as one of the important factors in the differentiation of MSCs into adipocytes. In brief, the inhibition of this gene's expression to prevent obesity is suggested as an idea for treatment in the future.

Key words: Mesenchymal Stem Cells, Differentiation, Adipocyte Cells, PPAR-gamma

*Corresponding Author:
Kaviani S;
E - mail: Kavianis@modares.ac.ir